

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examination

M. Juch (Givi) in Start. Eng) Sern I Duration: 3

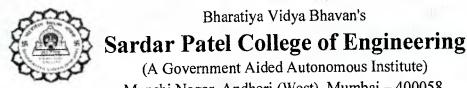
Max. Marks: 100 Hours Semester IF I Class, M.Tech. Name of the Course: Structural Dynamics

Program: Civil Engineering Course Code : PC-MST 101

Instructions:

- Answer any five questions. •
- Answers to all sub questions should be grouped together. v
- Figures to the right indicate full marks. ,
- Assume suitable data if necessary and state the same clearly. .

Question No		Points	CO	BL	PI
Q1 (a)	What is dynamic load? Briefly explain how the analysis of structure to random of dynamic load is done.	3	1	1,2	1.2.1
Q1 (b)	Explain clearly, the difference between static and dynamic analysis of structure.	3	1	2	1.2.1
Q1(c)	Derive the expression for Transmissibility Ratio and briefly explain how vibration isolation can be achieved.	8	2	3	1.3.1, 1.4.1
Q1(d)	An SDOF system of mass m and stiffness K is found to vibrate with natural frequency $\omega = 75.4$ rad/sec. If the stiffness is decreased by 1000 N/m, the natural frequency reduces by 50% of its original frequency. Determine the mass and stiffness for the original system.	6	2		
Q2 (b)	The frame shown in figure is subjected to a triangular pulse type load as shown in figure at girder level. Calculate the maximum horizontal displacement at girder level and maximum bending moment in column AB. The response	8	2	3	2.4.1


							1		1		
	3	3	20	15.61	1.00	-2.23	1.00		+	+	
	2	2	20			-2.25	1.80				
	1	1	20	3.85	1.00	-0.56	-1.25				
	1	+	20	205	$\frac{\Phi_{i1}}{1.00}$	$\begin{array}{c} \Phi_{i2} \\ 0.80 \end{array}$	Φ _{i3} 0.44				
	No.	No.	(t)	rad/sec		<u>م</u>					
	Story	Mass	Mass	ω	Mode	shapes					
	moments m ²	in groun	a Hoor C	olumns as			VUV IV14-			-	
Q4	damping	ratio =5	%. Als	so calculat	te the n	naximum	bending				
	Calculate	maxim	um disp	placements	s of ea	ach store	ey. Take				
	below is	subjected	to a su level ar	iddenly ap id 100 K!	plied co N at the	onstant lo e 3nd flo	bad of 50				
	A three s	tory fram	e with fi	ree vibratio	on chara	cteristics	s as given	20	2	4	2.4.1
	t. $\mathbf{E} = 2$	20000 M	lpa. Cal	culate nati	ural free	quencies	& mode				
Q3	· ·			ff. The ma			1				
	1	_		rst story y the size o			1				
				frame has				20	2	4	2.4.1
		ratio									
Q2(b)) Determ		equation of natural free			damping				1.4. P
	For the ri	gid body	system s	shown in f	igure:2.			12	2	3	1.3.1
		r = 20	1 000 (D+ m ²⁻ m ⁴ Figu	we \$	0	1.0	2 t _d	.0.//	3.0	
	l E	= 2×	ID N/W	nn 4							
4	Å		5.1	2-		0.2				11	
Ļ	1		4	D+		0.4			<u> </u>		
610			1	400		1				Vata ta	
	2F		I	110		0.6			- Fi	A	
ra	1					(Dľ F) met				Ŀ	
FCE	\$ 777	111	44	7					5		
	B	m m)=10t			1.0	t +	1		A	
	l l l			in the	e figura	1 1.2	A	N			
	spectra to	or this dy	namic lo	ad are also	shown		V	\backslash			111
						1.4	and the second s	1			1

 $\frac{1}{m} = 100 \text{ kg/m} \text{ m}_{1} = 5t$ m2=10+ Figure 3

EI = 20,000 Kr.m

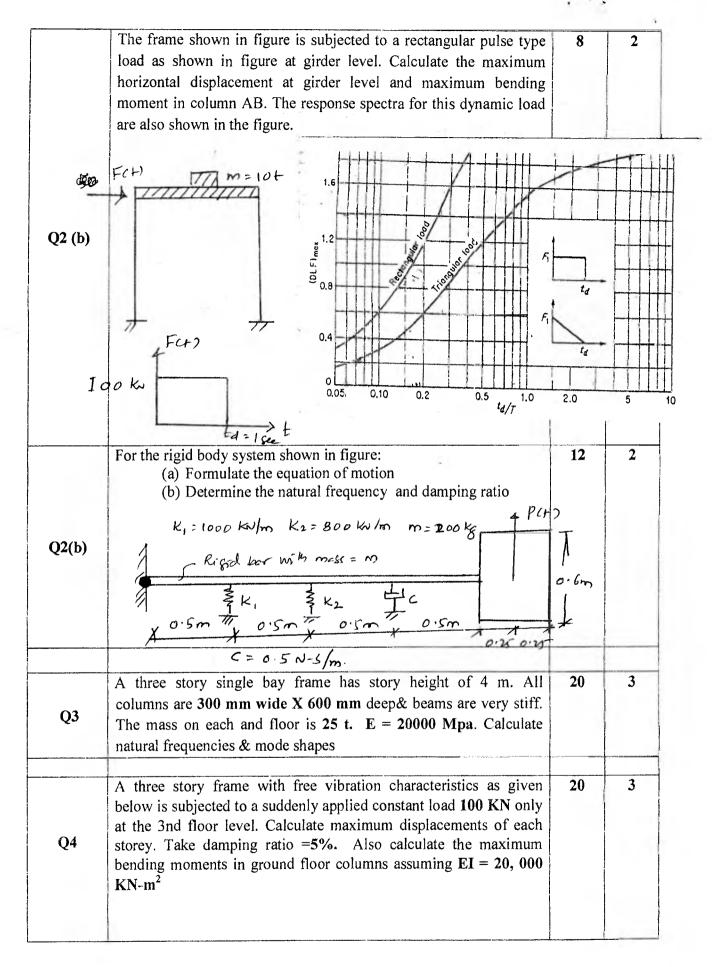
vi.A

	11 69m man 200 mm wide 600 mm	12	2	4	2.3.1
Q 5(b)	A simply supported beam of 8m span, 300 mm wide 600 mm deep carries a suddenly applied force of 100 KN at quarter span. Calculate the maximum displacement and bending moment responses under the load and shear force at left support. $E=2x10^4$ Mpa. and density of material = 2500 kg/m ³ . Take contribution from the four lowest contributing modes	12			2.4.1
Q6(a)	For the cantilever beam shown in figure, calculate the natural frequencies and mode shapes. $m_1 = 5t$ $m_2 = 10t$	10	2	4	2.3.1
		10	2	3	2.4.1
Q6(b)	If the beam referred in Q6(a) above , a suddenly applied constant load of 100 KN under second mass m_2 , calculated the maximum reposes under each mass.	10			
Q 7(a)	What is frequency domain method for analysis of dynamic response? Explain briefly.	4	3	2	2.4.
	What is complex frequency-response function? Explain	3	3	2	2.4.
Q 7(b)	briefly	i I			2.2.
Q 7(c)	Explain briefly the Fourier transform and inverse Fourier transform of the frequency function.	3	3	2	2.4
Q 7(d)	Represent the periodic load shown in figure ⁵ in terms of Fourier Series.	10	2,3	3	2.4 2.2
Figis	$\frac{1}{7} = \frac{1}{7} = \frac{21}{7}$	F D Plake .			
chinge	Kifsd Bar mass = m Ki k27 Fe 0.6m mass = m				
¥	5m 0.5m 0.25 0.35 0.5m		x		

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Re-Examination July - 2022

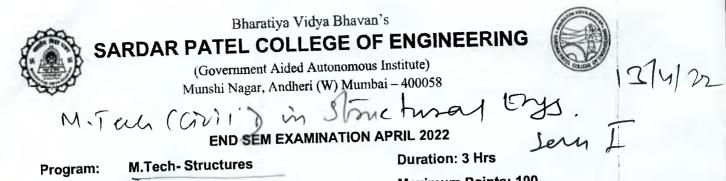
F. y. M. Turi (UVI) with Star. Duration: 3 Max. Marks: 100 Semester: M Lew Frogram: Civil Engineering nics Course Code : PC- MST 101 Class: M.Tech.

Name of the Course: Structural Dynamics


seras. 1817/22

Instructions:

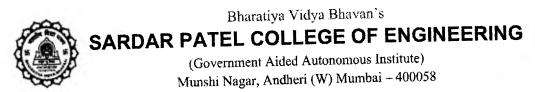
Hours


- Answer any five questions. •
- Answers to all sub questions should be grouped together. .
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

Question		Point	CO
No Q1 (a)	What is dynamic load? Briefly explain the different types of dynamic loads with suitable example.	s 3	1
Q1 (b)	What is damping? State the effects of damping on structure	2	1
Q1(c)	For the structural systems shown in figure compute the natural frequency of vibration. m = 1t $m = 1t$ $m = 1t$ $m = 1t$ $m = 1t$ $m = 2t$ T	8 3m.	2
Q1(d)	Derive the expression for Transmissibility Ratio and briefly explain how vibration isolation can be achieved.	7	2

	Story	Mass	Mass	ω	Mode	shapes				
	No.	No.	(t)	rad/sec	Φ_{i1}	Φ_{12}	Φ _{i3}			
	1	11	30	4.92	0.336	0.759	1.0			
	2	2	30	13.45	-2.46	-0.804	1.0			
	3	3	30	18.7	1.58	-1.157	2.58			
	For the l	heam sho	wn in fi	gure calci	ilate the	fundame	ntal freque	ncv	8	4
Q 5(a)		Rayleigh'	s Metho	1	m=2±		200 g/m II			
		E	= 2 ×10	N/mm	La a	$2 = 10^{\circ}$	s 4			
	A rigid				and the second s		ionic load	with	7	2
							e frequenc			
							the maxin			
Q 5(b)	-	ment at g F(t) 4m	7777		r F	E= 2 I = 2	x15 N/m	2 m m m t		
Q5(c)	in latera surface,	l directio the natu	n is 0.5 Iral peri	sec. When	n a 500N gthened	l plate is to 0.7 se	ral time pe clamped o c. what is	n its	5	2
	is subje	cted to a cy of 20	a harmo rad/sec.	nic force	with an floor le	plitude (vel. Calci	as given b 100 Kn an 11ate maxin	d at	10	3
Q6 (a)		Floor	Mass	Mode	ω,	Mod	le Shapes			
		No.	(t)	No.	rad/sec					
			<u> </u>	LL		Φ_{i1}	Φ_{i2}			
		1	20	1	14.58	1.0	1.481	-1		
		2	15		38.07	1.0	-0.822	-		
		4	15	2		11.0	0.022			
										1
					~		expressio	<u> </u>	5	2

	F(r)		j.
	DLF. Fi to		
Q6(c)	State and prove orthogonality principle. Also state the significance of orthogonality principle in dynamic analysis	5	3
Q 7(a)	What is frequency domain method for analysis of dynamic response? Explain briefly.	4	5
Q 7(b)	What is complex frequency-response function? Explain briefly	3	5
Q 7(c)	Explain briefly the Fourier transform and inverse Fourier transform of the frequency function.	3	5
Q 7(d)	SDOF system having natural frequency ω is subjected to square wave excitation as shown in figure. Determine the steady state response of the damped system. Take $\omega=5$, where is excitation frequency P_o \overline{r} P_o \overline{r} $-P_o$	10	2,5


Course Code: PC-MST 102

Maximum Points: 100

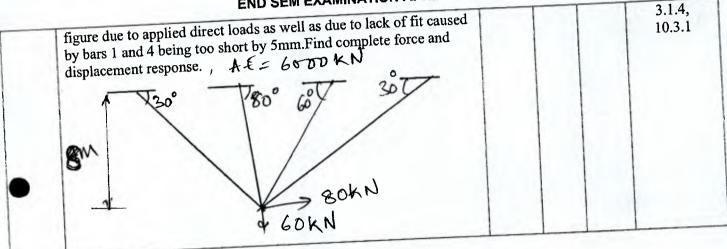
Course Name: Advanced Structural Analysis

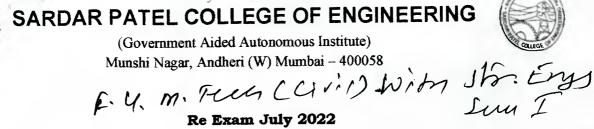
Semester:I

Q.No.	Questions	Point s	со	BL	PI
	Analyse the following continuous beam using conventional stiffness method 30 kN lm $100 kN$ $13 kN/m4 P$ $42 m$ $2 m$ $224 C$ $30 m$ 32 $223 m$ 32 $223 m$ 32 22				1.1.1,
Q1		20	2	3	1.51.,1.=
	Analyse the following plane frame using conventional stiffness method $JO \neq N$ $IO \neq N$ $IO \neq N$ $GO \neq N$ $IO \neq N$ $IO \neq N$ $GO \neq N$ $IO \neq N$ $IO \neq N$ $SO \neq N$ $IO \neq N$ C $SO \neq N$ $SO \neq N$ $SO \neq N$ $E = 80, NOD \neq N$ $A = 5000 \neq N$		2	3	2.2.3, 3.1.4, 10.3.1
Q2	The second secon	20	1	3	2.2.3,
Q3a	Find the total Strain energy in the following frame .Assume that the frame has uniform rectangular cross section,200 mm wide and 400mm deep.E= 10^5 N/mm ² , v=0.3.form factor=1.2	12	1	5	3.1.4, 10.3.1

END SEM EXAMINATION APRIL 2022

	END SEM EXAMINA HON ANNE 2022			1	
	60KN-3B 250KNC 3m Im BC ZOKNIM 90KN IM D ZOKNIM TO D ZOKN				
	Find deflection at the middle point C and slope B in the simply supported beam, loaded as shown in following figure. Assume $EI=8x10^4 \text{ kN/m}^2$ 80 kN $4 \text{ Arr 3 m C 3 m }^{\text{S}}$		1	3	2.2.3, 3.1.4, 10.3.1
Q3 b	Analyse the following beam using Flexibility method. 2 $\pounds 9 = 60, V00 \pm N - M$	8			
	t d 2m 2 p 2 m B 3 m C	20	1	3	2.2.3, 3.1.4, 10.3.1
Q4	Derive the expression of deflection for the infinite beam on elastic foundation subjected to a concentrated load at midspan	20	4	3	2.2.3, 3.1.4, 10.3.1
Q5	A hook carries a load of 7.5kN and the load line is at a distance of 20mm from the inner edge of the section which is trapezoidal.The load line also passes through the centre of curvature of the hook. The dimensions of the central horizontal trapezoidal section are: inner width= 30mm;outer width=15mm;depth=30mm. Calculate the maximum and minimum stresses. Also plot the variation of stress	20	3	3	2.2.3, 3.1.4, 10.3.1
Q6	across the section. Analyse by stiffness method the pin jointed frame as shown in	20	2	3	2.2.3,
Q7	Analyse by stiffness method the pin jointed name as say	t			




Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM EXAMINATION APRIL 2022

Program: M.Tech- Structures

Course Code: PC-MST 102

Duration: 3 Hrs Maximum Points: 100

1917122

Course Name: Advanced Structural Analysis

Semester:I

Q.No.	Questions	Points	СО	BL	PI
	Analyse the following continuous beam using conventional stiffness method 20kN go kN				
	Ann B 2m im Im A				
Q1		20	2	3	1.1.1, 1.3.1,1.2.1
	Analyse the following plane frame using conventional stiffness method B $ZO k N lm$ Am				
	ROKN -> 3m		2	3	2.2.3, 3.1.4, 10.3.1
Q2	A	20			

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re Exam July 2022

Q3a	Find the total Strain energy in the following frame .Assume that the frame has uniform rectangular cross section,200 mm wide and 400mm deep.E= 10^5 N/mm ² ,v=0.3.form factor=1.2	12	1	3	2.2.3, 3.1.4, 10.3.1
Q3 b	Find deflection at the middle point C and slope B in the simply supported beam.loaded as shown in following figure. Assume $EI=8x10^4 \text{ kN/m}^2$ SOKNIM SOKN A 2 M C 2M B	8	1	3	2.2.3, 3.1.4, 10.3.1
	Analyse the following beam using Flexibility method. 60k Nlm A 2M 2M A 2M 2M A 2M A 2M A		1	3	2.2.3, 3.1.4, 10.3.1
Q4		20			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

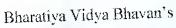
Re Exam July 2022

Q5	Derive the expression of deflection for the infinite beam on elastic foundation subjected to a concentrated load at midspan	20	4	3	2.2.3, 3.1.4, 10.3.1
Q6	A hook carries a load of 7.5kN and the load line is at a distance of 20mm from the inner edge of the section which is trapezoidal. The load line also passes through the centre of curvature of the hook. The dimensions of the central horizontal trapezoidal section are: inner width= 30mm;outer width=15mm;depth=30mm. Calculate the maximum and minimum stresses. Also plot the variation of stress across the section.	20	3	3	2.2.3, 3.1.4, 10.3.1
	Analyse by stiffness method the pin jointed frame as shown in figure due to applied direct loads as well as due to lack of fit caused by bars 1 and 4 being too short by 5mm.Find complete force and displacement response.				
	$\frac{A}{30^{\circ}} + \frac{B}{10^{\circ}} + \frac{C}{60} + \frac{D}{30^{\circ}} + \frac{D}{10^{\circ}} + \frac{B}{10^{\circ}} + \frac{C}{10^{\circ}} + \frac{D}{10^{\circ}} + \frac{D}{10^$		2	3	2.2.3, 3.1.4, 10.3.1
Q7	BOHN	20			

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF EN (Government Aided Autonomous Institut Munshi Nagar, Andheri (W) Mumbai – 400 End Semester Examination – Apr	0058 ril 2022	Lib
Program: M.Tech Civil Engineering - Structures Sov Course Code: EC-MST 105 Course Name: Design of Prestressed Concrete Structures Notes:	ກ Duration: 3 Hours Maximum Points: 100 Semester: 1	1814/22

- Attempt any 5 main questions. •
- Answers to all sub-questions should be grouped together .
- Draw neat sketches wherever possible ę
- Assume suitable data if missing and state the same clearly. ٠
- Use of IS 1343 is allowed

Q.No.	Questions	Points	со	BL	PI
1.a)	A simply supported prestressed I girder has flange dimensions as 2100x350mm and web dimensions as 300x1800mm. It is prestressed using a cable with parabolic profile, such that effective prestressing force is 1900kN. The cable is concentric at supports and has an eccentricity of 400mm at midspan. The girder supports a live load UDL of 10kN/m. Calculate the total stresses induced in the girder at midspan and supports by : a) Force Concept b) Stress Concept Also calculate the kern of the section.	10	1	3	1.4.1 2.3.2
1.b)	Explain in detail the difference between pre-tensioned and post-tensioned structures	05	1	1,2	2.2.4
1.c)	Explain the need of high strength materials in prestressed concrete structures	-	1	1,2	2.2.4
2.a)	Calculate the flexural capacity of a post-tensioned (bonded) I girder having the following properties: Flange = $(1400x200)mm$ Web = $(300x2000)mm$ Area of cables = $3000mm^2$ fp = $1600MPa$ Effective depth = $2250mm$ fck = $40MPa$	1	1	3	3.1.4


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - April 2022

2.b)	Design the shear reinforcement <i>at quarter span</i> for a simply supported beam of rectangular cross section 300mmx800mm and span 10m. It carries a live load UDL of 7kN/m(unfactored). It is prestressed by a straight cable that is having eccentricity of 200mm fck = 40MPa Effective prestress in cable = $1100MPa$ Characteristic strength of PT steel = $1600MPa$ Use Fe415 grade steel for reinforcement.	1	2	4	3.1.4
3.a)	A simply supported post tensioned beam of span 18mwith 2 cables having a cross section of 300mmX 900mmis successively tensioned from a single end in the order ofcables 1-2.ProfileEccentricity at midspanCable 1Parabolic25mm150mm (below N.A.)Cable 2Straight350mm(below NA)Each cable has a cross section area of 300mm² and a initial tension of 1200MPa. Co-efficient for friction = 0.4 co-efficient for wave effect = 0.0015/m. Age of concre at transfer of prestress = 28days. Anchorage slip = 4mm Es = 210kN/mm², Ec = 30kN/mm². Calculate the % losses due to elastic shortenin	12 n 5; te n.	1	3	2.2.1
3.b)	shrinkage, friction and anchorage slip Explain the concept of debonding of cables.	4	1,3	2	1.4.1
3.c)	Explain transmission length for pretensioned structures		1,2	2	1.4.1
4.	Design a Type 1 post tensioned bonded I girder (simp supported) for the following data : Effective span = 20m Live load = 18kN/m fck = 40MPa fci = 30MPa Es = 210kN/mm ² Ec = 31.6 kN/mm ² Assumed loss % = 30% Use 8mmø strands for cables. The characteristic stren of cables is 1500MPa. Calculate the size of sec	20 ngth	2	4	3.1. 3.2.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination – April 2022

	required, prestressing force, eccentricity with safe cable zone. Draw neat sketch of the cable profile				-
5.a)	A 14m span simply supported composite beam consists of 300mmX700mm precast stem and a cast-in-situ flange of 600mmX400mm. The stem is a post tensioned unit subjected to an initial prestressing force of 900kN. %loss = 25%. The tendons are provided at 150mm from the soffit of stem. The beam has to support a live load of 10kN/m. Determine the resultant stress distribution in the beam if the beam is a) unpropped; b) propped	15	1	3	2.2.1 1.4.1
5.b)	Explain the effect of prestressing on shear resistance of sections	05	1,3	2	1.4.1
6.a)	A simply supported prestressed beam of cross section 350mmX800mm and span 12m has a straight profile of cable with eccentricity of 200mm below N.A. It carries a live load of 6kN/m. The area of cable is 500mm ² and it is initially tensioned to 1450N/mm ² . Loss ratio = 0.75 Calculate the : i) Instantaneous deflection due to dead load + prestressing force ii) Long term deflection if the creep coefficient is 1.6 Es=210kN/mm ² ; Ec =35kN/mm ²	10	1	3	2.2. 1.4.
6.b)	Design the end zone reinforcement for a pre-tensioned I- beam having flange of 200mmx60mm and web of 80mmx400mm. The initial prestress in 10 wires of 5mm diameter is 1300MPa and the wires have an effective eccentricity of 100mm. Assume the wires to be indented.	10	2	4	3.1 3.1
7.a)	The cable profile for a two span continuous beam is as shown in figure below. The prestressing force is 1500kN.	20	3	4	2.3
	J. 100KN	,	∏ ^{150k}	đ	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

F. Y. M. Tella (Givis) with Star Eng. Duration: 3 Hours Lem I

Program: M.Tech Civil Engineering - Structures

Course Code: EC-MST 105

Course Name: Design of Prestressed Concrete Structures

Notes:

- Attempt any 5 main questions. •
- Answers to all sub-questions should be grouped together
- Draw neat sketches wherever possible •
- Assume suitable data if missing and state the same clearly.
- Use of IS 1343 is allowed

Q.No.	Questions	Points	со	BL	PI
	a) What is pretensioning and post-tensioning?b) Explain how prestressing affects deflection of beams. What are the factors affecting long term deflection?				
1	 c) Explain what do you mean by full prestressing, limited prestressing and partial prestressing. d) Calculate the stress in extreme fibres at support for a cantilever beam having 5m span, (250x500)mm cross section and supporting a UDL of 15kN/m on full span. It is prestressed with a straight cable having eccentricity 250mm above the CG. 	20	1	1,2	2.2.4
2.a)	A pretensioned concrete beam of size 250 mm X 600 mm has an effective cover to tendon 200 mm. Area of prestressing steel is 565 mm2, fck = 40 N/mm2, fp = 1600 N/mm^2 . Calculate the ultimate flexural strength of the section. fck = 40MPa	10	1	3	3.1.4
2.b)	Design the shear reinforcement <i>at one third span</i> for a simply supported beam of rectangular cross section $300 \text{mmx}700 \text{mm}$ and span 10m. It carries a live load UDL of 8kN/m(unfactored). It is prestressed by a straight cable that is having eccentricity of 250mm fck = 40MPa Effective prestress in cable = 1100MPa Characteristic strength of PT steel = 1600MPa Use Fe415 grade steel for reinforcement.	10	2	4	3.1.4

Maximum Points: 100 Semester: 1

20/7/22-

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-exam - July 2022

	is successiv cables 1-2.			nd in the order of				
		Profile	Eccentricity at midspan	Eccentricity at support	1			
	Cable 1	Parabolic	25mm (below N.A.)	0mm				
	Cable 2	Straight	350mm(below NA)	NA)	15	1	3	2.2.1
3.a)	initial tens co-efficient at transfer Es = 210k Calculate and ancho	ion of 1200M at for wave e of prestress N/mm ² ,Ec = the % losses rage slip ate the stress ue to prestress	1Pa. Co-efficient ffect = 0.0015/m = 28days. Ancho 30kN/mm ² . due to elastic sl in extreme fibre	⁷ 350mm ² and an for friction = 0.5; . Age of concrete orage slip = 4mm. nortening, friction s at mid span and d load of 10kN/m				
	PSC bean	n as compare	d to that of an RC		05	1,3	2	1.4.1
4.	supported Effective Live load fck = 40N fci = 30N Es = 210 Ec = 31.6 Assumed Use 8mm of cable	I) for the follo span = 14m = 18kN/m APa APa kN/mm^2 5 kN/mm ² $1 loss \% = 30^{\circ}$ $n\phi$ strands fo s is 1300M prestressing	wing data : 7 r cables. The cha Pa. Calculate th force, eccentric	ed girder (simply aracteristic strength he size of section ity with safe cable	20	2	4	3.1.4 3.2.1
5.a)	A 14m s 250mm 500mm subjecte = 26.5% soffit of 10kN/m	pan simply so (600mm prec) (300mm. The d to an initian b. The tendon f stem. The Determine	cast stem and a c ne stem is a p l prestressing for ns are provided a beam has to sur	ast-in-situ flange of oost tensioned unit ce of 800kN. %loss at 150mm from the oport a live load of ss distribution in the	20	1	3	2.2. 1.4.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-exam - July 2022

	Draw neat sketches to show the variations of stresses at each stage				
	Derive the expression for deflection due to prestress when the profile is parabolic having zero eccentricity at ends and "e" at mid span for a simply supported beam				
6.a)	A simply supported prestressed beam of cross section 450mmX1100mm and span 15m has a straight profile of cable with eccentricity of 400mm below N.A. It carries a live load of 5kN/m. The area of cable is 400 mm ² and it is initially tensioned to 1350 N/mm ² . % loss = 28%	10	1	3	2.2.1
	Calculate the : i) Instantaneous deflection due to dead load + prestressing force ii) Long term deflection if the creep coefficient is 1.6				
	Es=210kN/mm ² ; Ec =35kN/mm ² Design the end zone reinforcement for a pre-tensioned I-				1
6.b)	beam having flange of 200mmx60mm and web of 80mmx400mm. The initial prestress in 10 wires of 5mm diameter is 1300MPa and the wires have an effective eccentricity of 100mm. Assume the wires to be indented.	10	2	4	3.1.4 3.1.6
7.a)	The cable profile for a two span continuous beam is as shown in figure below. The prestressing force is 1250kN. Locate the pressure line due to prestressing force and the shown loads	20	3	4	2.3.2 1.4.1

125mm

Ŕ

4.511

150mm

4m

A

4m

1 \$50kN

180mm

4.5m

C

SARDAR PATEL COLLEGE OF ENGINEERING

jb

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations- April 2022

Program: M.Tech. (Structural Engineering) Serve I

Course Code: EC-MST114

Duration: 3 Hours Maximum Points: 100

Semester: I

Course Name: Elective-II: Non Linear Analysis

Instructions:

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	со	BL	PI
Q1(a)	State and explain uniqueness theorem.	(05)	1	1,2	1.3.1 2.1.3
Q1(b)	What are different methods of buckling? Explain.	(05)	3	2	1.3.1
Q1(c)	Explain the modes of buckling in case of a channel section symmetrical about X-axis.	(05)	4	2	1.3.1
Q1(d)	In case of lateral buckling of rectangular beam in pure bending, write the expression for critical stress and explain the terms involved in the expression.	(05)	4	1,2	1.3.
Q2(a)	A propped cantilever of span 5 m is subjected to a udl of 20 kN/m on the entire span. Find the moment capacity of the beam required. Take load factor=1.5.	(10)	1	3,4	2.1.
Q2(b)	Find the shape factor of an unsymmetrical I section with following details: Top flange width = 300 mm & thickness = 25 mm Bottom flange width = 350 mm & thickness = 25 mm Depth of web = 250 mm and thickness of web = 20 mm	(10)	1	3,4	2.1.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations- April 2022

	shown in t	the figure are wo	ure below, find the rking loads and the so shown in the fig	ne plastic r			(14)	1	3,4	2.1.3 2.2.3
		70		40	kN					
	2012	5 m	, 5 m	3 m	3 m					
	20 <u>kN</u>	125 kN-m		75 kN						
		75 kN-m	75 kN-m		60 kN-m	3m				
_	-	_		-	-					
Q3(b)	What are the analysis?	he advantages an	d disadvantages o	f plastic an	alysis ov	er elastic	(06)	1	1,2	1.3.1 2.1.3
Q4(a)			bjected to workir lculate the (true) l	-		-	(10)	1	3,4	2.1.3 2.2.3
	$\frac{3}{A}$	40 kN $h \downarrow 2 \text{ m} \text{ B} \downarrow$ $M_{\text{P}} = 2$	25 kN/m 25 kN/m $6 \text{ m} 2 \text{ M}_{\text{P}}$		$ \begin{array}{c} 50 \text{ kN} \\ \underline{\text{m}} \\ M_{P} \end{array} $	4 m D				
	Write a m									1
Q4(b)	flexural me		shear force on p	plastic mor	ment cap	acity of a	(10)	2	1,2, 3	1.3.1 2.1.3
Q4(b)	flexural me A simply compressiv	ember. supported coluve load P. Find th	shear force on p mn of length L the critical load by mber varies accord	is under finite diffe	r the ac	tion of a		2		1
	flexural mo A simply compressiv flexural sti EI(x)= EI ₀	ember. supported colu- ve load P. Find th ffness of the mer $0 \le x \le L/3$ EI ₀ $L/3 \le x \le 2L$	imn of length L the critical load by mber varies accord L/3	is under finite diffe	r the ac	tion of a			3	2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations- April 2022

Q6(a)	Determine the critical load for the frame shown in figure.	(15)	3	3,4	2.2.3 2.4.1
	$P \qquad P \qquad P \qquad 4 m EI \qquad 4 m EI \qquad 4 m \qquad EI \qquad EI \qquad EI \qquad 4 m \qquad EI \qquad $				
Q6(b)	What is a beam column? Explain.	(05)	3	1,2	1.3.1 2.1.3
Q7(a)	Derive the governing differential equation for the torsional buckling of column with symmetrical cross- section.	(14)	4	1,2, 3	1.3.1 2.1.3
Q7(b)	Write a note lateral buckling of beams.	(06)	4	1,2	1.3.1 2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING (Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER RE-EXAMINATION JULY 2022

Program: F.Y.M.TECH (Structural Engineering)

Course Code: EC-MST 125

Maximum Points: 100

Duration: 3 Hrs.

Course Name: Elective-III Advanced Solid Mechanics

Semester: I 7/22 21

9

Note: Solve any FIVE. Assume suitable data if necessary.

Q.No.	Questions	Points	СО	BL
Q.1 a)	The state of stress at a point is given by the following array of terms: $\begin{bmatrix} 5 & 2 & 1 \\ 2 & 3 & 4 \\ 1 & 4 & 2 \end{bmatrix}$ KN/m ² . Determine Principal stresses and its direction.	10	1	3
Q.1 b)	The strain components at a point with respect to x,y and z coordinate system are: ($\varepsilon_x = 0.01$, $\varepsilon_y = 0.02$, $\varepsilon_z = 0.03$, $\gamma_{xy} = \gamma_{yz} = \gamma_{zx} = 0.016$), if the coordinate axes rotate about z axis (vertical) through 30 ⁰ in the clockwise direction, determine the new strain components.	10	1	3
Q.2 a)	Derive equilibrium equations for 2D state of stress and also derive stress-strain displacement relation in polar coordinate system.	10	2	3
Q.2 b)	What is the use of Airy's stress function explain in brief? Using Airy's stress function draw stress distribution for minimum three cases for polynomial equation given below. $\phi = \frac{Ax^5}{20} + \frac{Bx^4y}{12} + \frac{Cx^3y^2}{6} + \frac{Dx^2y^3}{6} + \frac{Exy^4}{12} + \frac{Fy^5}{20}$	10	3	3
Q.3 a)	Derive expressions for σ_x, σ_y and τ_{xy} for a cantilever beam loaded at the end. Also find strains in terms of displacements. A cantilever beam of 2 m length having rectangular cross section 80 x 120 mm. It is subjected to end load of 1.5 KN, calculate stress distribution at the fixed end using above expressions.		2	3
Q.3 b)	What is shear centre? Determine the position of the shear centre of the section shown below.	10	3	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER RE-EXAMINATION JULY 2022

	2 cm $4 cm$ $8 cm$ $4 cm$ $4 cm$			
Q.4 a)	Derive an Expression for warping function ψ to solve the problems of torsion of prismatic bar. Using the expression find	14	2	3
	out resultant shear stress for circular and elliptical cross section.			
Q.4 b)	Describe the idealized elasto-plastic stress strain curves of different material behaviour with neat sketches and their corresponding dynamic model.	6	3	3
Q.5	A simply supported beam subjected to uniformly distributed load, derive an expression for maximum normal and shear	20	3	3
	stresses using suitable stress function. Using above derived expressions determine the maximum stress distribution in the beam of C/S 60mm x 80mm subjected to UDL 2 KN/M. Take span of beam 3 m.			
Q.6 a)	Using above derived expressions determine the maximum stress	12	2	3

III ALL THE BEST III

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION APRIL 2022

21/2

Lib

Program: F.Y.M.TECH (Structural Engineering) Serve Duration: 3 Hrs.

Course Code: EC-MST 125

Maximum Points: 100

Course Name: Elective-III Advanced Solid Mechanics

Semester: I

Note: Solve any FIVE. Assume suitable data if necessary.

Q.No.	Questions	Point	CO	BL
Q.1 a)	The state of stress at a point for a given reference axes xyz is	s 12	1	
	given by the following array of terms: $\begin{bmatrix} 150 & 80 & -60\\ 80 & -120 & 50\\ -60 & 50 & 80 \end{bmatrix}$ KN/m ² . Determine the tress components in the new coordinate system if new set of axes is formed by rotating <i>xyz</i> about <i>z</i> -axis in anticlockwise direction by 45° . Also, determine Principal		1	3
Q.1 b)	stresses with respect to new stress components and direction for maximum principal stress. The components of stress at a point are given by: $\sigma_x = 3x^2y^2 + 2x, \ \sigma_y = 5xyz^2 + 3y,$	8	1	3
	$\sigma_z = x^2 y + y^2 z$, $\tau_{xy} = 0$, $\tau_{yz} = \tau_{xz} = 3xy^2 z + 2xy$. Determine whether these components of stress satisfy the equilibrium equations or not at the point (1, -1, 2). If not, then determine the suitable body forces required at this point so that these stress components become under equilibrium.			
Q.2 a)	Derive the components of strain tensor from the deformation of the line element. Also obtained expressions for principal strain in terms of strain invariants.	12	1	3
Q.2 b)	Explain Airy's stress function. Using Airy's stress function draw stress distribution for minimum three cases for polynomial equation given below. $\phi = Ax^5 + Bx^4y + Cx^3y^2 + Dx^2y^3 + Exy^4 + Fy^5$	8	2	3
Q.3 a)	Derive expressions for σ_x , σ_y and τ_{xy} for a cantilever beam loaded at the end. Also find strains in terms of displacements. A cantilever beam of 2 m length having rectangular cross section 100 x 150 mm. It is subjected to end load of 2 KN, calculate stress distribution at the fixed end using above expressions.	12	2	3
2.3 b)	Explain in detail the theories of failure.	8	3	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION APRIL 2022

 Q.5 a) If a bar subjected to couples applied at the end, using proper warping function derive expression for torsion which satisfy warping function and boundary conditions. Also find shearing stresses in case of elliptical cross section. Q.5 b) Describe the idealized elasto-plastic stress strain curves of 4 different material behaviour with neat sketches and their corresponding dynamic model. Q.6 a) Define and explain importance of shear center. Also draw and mark shear center for cross section such as I, H, L (equal angle sec) sections. Also find location of shear center from the center of bigger flange for figure given below: Q.6 b) What is yield criteria? Explain the Tresca and Me. Minutes and Me. 		3 3 3	3 3 3 3
 Q.4 b) Find the displacements along xyz axes for the prismatic bar suspended under self-weight using boundary conditions and stain displacement relationships. Q.5 a) If a bar subjected to couples applied at the end, using proper warping function derive expression for torsion which satisfy warping function and boundary conditions. Also find shearing stresses in case of elliptical cross section. Q.5 b) Describe the idealized elasto-plastic stress strain curves of 4 different material behaviour with neat sketches and their corresponding dynamic model. Q.6 a) Define and explain importance of shear center. Also draw and mark shear center for cross section such as I, H, L (equal angle sec) sections. Also find location of shear center of bigger flange for figure given below: a.6 b) What is yield criteria? Explain the Traces and Mark Mark 	16	3	3
 Q.5 a) If a bar subjected to couples applied at the end, using proper warping function derive expression for torsion which satisfy warping function and boundary conditions. Also find shearing stresses in case of elliptical cross section. Q.5 b) Describe the idealized elasto-plastic stress strain curves of 4 different material behaviour with neat sketches and their corresponding dynamic model. Q.6 a) Define and explain importance of shear center. Also draw and mark shear center for cross section such as I, H, L (equal angle sec) sections. Also find location of shear center of bigger flange for figure given below: 6 b) What is yield criteria? Explain the Trescen and Va. Minet and Va. Min	4		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		3	3
mark shear center for cross section such as I, H, L (equal angle sec) sections. Also find location of shear center from the center of b ₁ =100 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_1 t_2 t_1 t_1 t_1 t_2 t_1 t_1 t_1 t_2 t_1 t_1 t_2 t_1 t_1 t_2 t_1 t_1 t_2 t_1 t_1 t_2 t_1 t_2 t_1 t_2 t_3 t_1 t_2 t_1 t_2 t_1 t_2 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_2 t_3 t_3 t_2 t_3 t_3 t_2 t_3 t_3 t_3 t_1 t_2 t_3	0		
i jetta ontonia, Livingin ine Trecco and Valla		3	3
criteria for defining the yield surface. Figure shows three elements <i>a</i> , <i>b</i> , <i>c</i> subjected to different state of stress. Which one of these three will yield first according to (i) maximum stress theory, (ii)maximum strain theory (iii) maximum shear stress theory. Take Poisson's ratio 0.25	3		3

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai) F. Y. M. T-ich Sem I All Branch, RE-EXAMINATION

Programme	MTech Structural Engineering	MTech Construction Management	MTech Power System and Power Electronics
Course Code	MC-PG01	MC-PG01	MC-MTPX101

Subject : Research Methodology and IPR Total Marks :100 Class: MTech, Sem: I,

Duration : 3 Hours 22nd July, 2022

• Solve Any Five Questions

- Answers to all sub questions must be grouped together
- Figures to the right indicate full marks
- Assume suitable data wherever necessary

SN	Question statement	Points	Module	CO
Q1	 Illustrate the following with examples wherever necessary. A. Z test B. Causal relationships Scatter Plot and Correlation analysis C. Writing a Literature survey paper D. Procedure to file patent 	20	M1,M3, M4, M6, M7	CO3, CO4
Q2A	Design a Sample (with sample size n=88) based on optimum allocation using Cost Optimal Disproportionate sampling design for the following case. A population is divided into four strata so that N1 = 5500, N2 = 7500 and N3 = 6000, N4 =8500 Respective standard deviations are: $s1=8$, $s2=9$, $s3=6$, s4=12. Costs in rupees to collect the strata are C1= 6000, C2=8500, C3=7000, C4= 7000.		M3	C02
Q2B	Research Scholar conducted experimental research on concrete cubes, to study the influence of fly ash, GGBS and glass waste powder (GWP) individually, on the compressive strength of concrete. The cubes were casted for M30 grade of concrete and by random sampling method, tested after 28 days curing. For cubes in Group I, 30% fly ash was added, for Group II, 30% GGBS was added and in Group III, 30% GWP was added. The 28 days compressive strengths of cubes in N/mm ² are given below. Check whether the mean compressive strength of the 3 different groups is same or not. Group I – 29, 35, 33, 28, 27, 32 Group II – 32, 33, 35, 29, 21 Group III – 35, 31, 28, 33, 34,36, 29		M5	CO2

Q3A	A data of 466 const type of construction by Type of Project association between	n project and t are as follo	success ws. At	of cons alpha =	truction proje 0.05 do these	ect. The respon	ise	10	M5	CO2
		Internation Projects		1	stic Project	Total				
	Successful	39		74		113				
	Not Successful	172		181		353				
	Total	211 255 466								
Q3B	State the Salient features of Chi Square Test.						10	M1, M5	CO1,	
×										CO2
Q4A	A manufacturer of Sport Shoes has been tracking the relationship between sales and advertising expenditure in dollars. Use linear regression to find out what sales might be if the company invested \$71,000 in advertising next year.					out	10	M1, M5	CO1, CO2	
		1	2		3	4				
		160	172		183	185				
		52	67		69	73				
Q4B	How will you select	ct a good rese	arch pro	blem?				10	Mi	CO1
×					D:00	1 - 4		10	M2, M3	C01,
Q5A	State the Guideline Research Paper and			h article	. Differentiate	e between		10	1412, 1415	CO1, CO2
Q5B	State the examples difference in Quali	of Qualitativ	e and Q	uantitati ve Resea	ve Research . Irch.	Explain the		10	M1, M2	C01
Q6A	Write short note of	n						10	M5 ,	CO3,
•	Null Hypo	othesis and Al	ternate l	Hypothe	sis				M7	CO4
	• Type 1 error and Type 2 error									
	Test Statis	and Tradema	rk							
0(P	State the Salient F	eatures of IPF	<u>u n</u> .					10	M4, M6	CO3,
Q6B	State the Salient I	Cuturos or in I								CO4
Q7A	Explain the follow • Limitation	ving with suita	able exa	mples Hypothe	esis Test			10	M1	CO1
	Rejection Region									
	Left Tail	Test and Righ	t Tail T	est						
	1	Test and Two	Tail Te	st	itable avome	10		10	M5	CO3
Q7B	D'CC- metioto hota	triate between F Test and T Test with suitable example.						**	1110	1

1

•

* 11 4

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

m.T.	ery strin Ci	MESTER EXAMIN	ATION 2574/22
Programme	MTech Structural Engineering	MTech Construction Management	MTech Power Sytems and Power Electronics
Course Code	MC-PG01	MC-PG01	MC-MTPX101

Subject : Research Methodology and IPR Total Marks :100

Class: MTech, Sem:I,

Duration : 3 Hours 25th April 2022

- Question 1 is compulsory
- Solve Any Four Questions from the remaining
- Answers to all sub questions **must be** grouped together
- Figures to the right indicate full marks
- Assume suitable data wherever necessary

SN	Question statement			
		Points	Module	CO
Q1	 Explain the following with suitable examples A. Guidelines for writing a Literature survey for a paper A. Statistical Hypothesis Test Procedures and the Criminal Trial Analogy B. Types of IPR and their significance C. Scatter Plot and Co-relation 	20	M1,M3, M4, M6, M7	CO3, CO4
Q2A	A population is divided into four strata so that $N1 = 8500$, $N2 = 4500$ and $N3 = 9500$, $N4 = 11500$ Respective standard deviations are: $s1=12$, $s2=14$, $s3=7$, $s4=6$. Costs in rupees to collect the strata are C1= 9000, C2=5000, C3=10000, C4= 12000. How should a sample of size n = 98 be allocated to the four strata, if we want optimum allocation using Cost Optimal Disproportionate sampling design?	10	M3	CO2
Q2B	Researcher conducted experimental investigations on concrete cubes, to study the influence of fly ash, GGBS and glass waste powder (GWP) individually, on the compressive strength of concrete. The cubes were casted for M30 grade of concrete and by random sampling method, tested after 28 days curing. For cubes in Group I, 30% fly ash was added, for Group II, 30% GGBS was added and in Group III, 30% GWP was added. The 28 days compressive strengths of cubes in N/mm ² are given below. Check whether the mean compressive strength of the 3 different groups is same or not. Group I – 35, 29, 34, 35, 27, 29 Group II – 33, 29, 30, 29, 33 Group III – 34, 28, 29, 32, 33, 27, 28	10	M5	CO2

Q3A	type of construction by Type of Proje	ion project and succent are as follows.	vas reviewed to know ass cess of construction proje At alpha =0.05 do these and being successful?	ect. The response	10	M5	CO2
	International ProjectsDomestic ProjectTotalSuccessful4688134Not Successful184179363						
	Total	230	267	497			
Q3B	at 0.05 and 0.01 certain kind of pla	levels of significand ate is 0.34 units, as	sis of sample size 35 de ce whether the thermal of has been claimed. The m d in similar studies, we	conductivity of a nean of sample is	10	M1, M5	CO1, CO2
		such determinatio	ns is given by $\sigma = 0.1$				•
Q4A	A maker of golf shirts has been tracking the relationship between sales and advertising dollars. Use linear regression to find out what sales might be if the company invested \$68,000 in advertising next year.					M1, M5	CO1, CO2
		1 2	3	4			
	Sales \$ (y) Advertisement expenditure	150 171 42 62	170 60	178 65			
Q4B		ristics of Good resea	arch Problem		10	M1	CO1
Q5A		een Research Paper es to write the resea			10	M2, M3	CO1, CO2
Q5B	Differentiate betw	een Qualitative and	Quantitative Research		10	M1, M2	CO1
Q6A	State the differenc	e between Copyrigh	nt Patent and Trademark		10	M5	CO3, CO4
Q6B	Draw the flow cha	art and explain the p	rocedure to receive the p	patent.	10	M4, M6	(D , CO4
Q7	 Null Hype Type 1 en Test Statis 	ving with suitable ex othesis and Alternat for and Type 2 error stics the Level and p value	e Hypothesis		20	M1	CO1
	RejectionLeft Tail 1	ns and advantages of Region Fest and Right Tail Fest and Two Tail T	Test		÷		

à

٠

1

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - April 2022 Examinations

M.Tuc - Civil Engs

Program: F Y M.Tech

Course Code: AU-PG 01

Maximum Points:100

Duration:

us

3 Hours

Course Name: Project Planning and Management

Semester: I

Notes: 1. Answer any five questions. 2 All questions carry 20 points.

Q.No.	Questions	Points	со	BL	PI
1	1.1 What are the attributes or skills that a Project Manager should have?	10	2	2	2.1.2
	1.2 Explain the three Project Quality Management processes	10	2	2	11.3.1
2	2.1 List out ten steps, in sequence, for the preparation of Civil Structural, Architectural Tender specification.	10	1	2	11.3.1
	2.2 Why is it important to issue a Civil, Structural, Architectural design basis for the project? List ten of the most important design requirements that should be contained in the design basis.	10	1	2	3.1.6
3	3.1 Explain the three fundamental components of a computer model used for structural analysis. What are the three stages in the process of computer analysis?	10	3	2	6.1.1
	3.2 List out at least ten steps, in sequence, in the designing of a complex plant steel structure	10	3	2	6.1.1
4	4.1 What is the difference in approach between Limit state (Load Factor) design and working stress design? In Limit state design what are the two key load conditions? What are the checks for each of these load conditions?	10	3	4	3.4.1

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester – April 2022 Examinations

	4.2 Define degrees of freedom. Specify the degrees of freedom and the equilibrium conditions for a rigid body				
	in two dimensions.	5	2	3	1.2.1
	4.3 Explain Strength, Stiffness, Stability and Ductility at the element and system levels.	5	2	3	11.3.2
5	Explain any three top emerging trends which are impacting the Construction industry today.	10	1	2	3.3.1
	5.2 In five areas, explain how structural engineers can overcome the challenges faced by the profession.	10	1	2	2.4.2
6	List out atleast ten points defining the scope of a contour and traverse survey for a project plot.	10	3	4	2.4.2
	6.2 Why is quantity/cost monitoring important during execution of a CSA item-rate contract? How is quantity monitoring done during the project execution?	5	3	5	1.3.1
	6.3 What are the main objectives of constructability reviews	5	4	2	11.3.1
7	7.1 In a soil investigation specification, describe five field tests you would specify along with the soil parameter each test would measure	10	3	2	3.2.2
	7.2 List six soil properties and four recommendations for pile foundations that you would ask for in the final geotechnical report.	10	2	3	3.4.2